
Charge distribution induced inside
complex plasmonic nanoparticles

R. Marty1, G. Baffou2, A. Arbouet1, C. Girard1, and R. Quidant2,3
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Abstract: We developed a versatile numerical technique to compute the
three–dimensional charge distribution inside plasmonic nanoparticles. This
method can be easily applied to investigate the charge distribution inside
arbitrarily complex plasmonic nanostructures and to identify the nature of
the multipolar plasmon modes involved at plasmonic resonances. Its ability
to unravel the physical origin of plasmonic spectral features is demonstrated
in the case of a single gold nanotriangle and of a gold nano-antenna. Finally,
we show how the volume charge distribution can be used to define and
compute the first terms of the multipolar expansion.
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1. Introduction

The linear optical properties of small metallic aggregates have been extensively investigated
for the last fifty years. In the case of noble metal particles, characterized by a permittivity
εm(ω0), embedded in transparent materials of dielectric constant εenv, the interface between
the two media introduces surface plasmon resonances, the frequency of which depends on the
optical properties of the metal and the surroundings, as well as the topography of the particle
surface [1]. In these systems, the resonant excitation of electron oscillations leads to a dra-
matic enhancement of the optical near–field simultaneously with a spatial localization of the
electromagnetic energy in nanometer sized volumes[2].

For nanoparticles with sizes down to the optical wavelength, the surface plasmon resonances
are clearly dipolar and can be satisfactorily described by the lowest order of the series of spher-
ical harmonics of Mie theory. For larger particles, typically in the 100 nm range, retardation
effects inside the plasmonic particles lead to the appearance of higher order multipolar plas-
mon resonances that show off as new features in the optical spectra [3, 4]. The spectral sig-
natures of these higher order plasmon resonances have first been observed in elongated gold
and silver nanoparticles either colloidal or lithographically fabricated [3, 5] and more recently
in noble metal nanoprisms [4, 6, 7]. These multipolar modes have been identified through the
size dependence of their spectral position [5] or the angular distribution of the scattered light
[8]. Nevertheless, fewer experimental investigations have directly demonstrated the multipolar
character of the observed resonances [9]. Theoretical studies of these multipolar resonances
have been achieved in two–dimensional (2D) silver scatterers of arbitrary cross–sections [10]
by computing and representing the induced surface charge density [11].

Recently, the specific properties of these multipolar plasmon resonances have attracted a lot
of attention. Indeed, while the dipolar plasmon modes have a very high radiative damping rate

#120705 - $15.00 USD Received 30 Nov 2009; revised 8 Jan 2010; accepted 11 Jan 2010; published 28 Jan 2010

(C) 2010 OSA 1 February 2010 / Vol. 18,  No. 3 / OPTICS EXPRESS  3036



leading to prohibitive energy losses for their use in plasmonic nanodevices, the plasmon modes
of higher orders display lower radiative losses since they couple weakly to an homogeneous
external electric field. This property could make them interesting for carrying optical signals
in plasmonic circuits composed of metallic particles assembled on a surface [12]. In a similar
context, it has been shown that the optical activity of the high–order localized plasmon modes
of plasmonic metamaterials can be enhanced by introducing a structural asymmetry [13, 14].
The coherent coupling between different plasmon modes leads to the appearance of a Fano–like
line shape in the extinction spectrum of plasmonic nanocavities [15, 16]. In the time domain,
the coherent coupling between different plasmon modes can be used to enhance dramatically
the lifetime of coupled antisymmetric plasmon modes [17]. Consequently, the engineering of
the high–order plasmon resonances of plasmonic nanostructures should bring significant break-
through in plasmonic nano–devices and plasmonic circuitry.

In this context, a versatile tool is required to directly visualize the charge distribution inside
complex plasmonic systems composed of one unit or several interacting subsystems. Boundary
integrals or boundary element methods allows evaluating the surface charge density on the
surface of arbitrarily shaped nano-objects. For instance, this has been shown by Fuchs in the
case of ionic crystal cubes[18]. This approach has been recently extended to take into account
retardation effects in arbitrarily shaped dielectrics by Garcia de Abajo et al[19] . However, to
our knowledge, the full three dimensional volume charge density inside complex plasmonic
nanostructures has not been computed yet. In this communication, we describe a theoretical
scheme together with a numerical procedure to compute the volume charge distribution inside
plasmonic nanoparticles of arbitrary shape. We demonstrate that the method is well–suited to
the investigation of the charge repartition and to the identification of the multipolar plasmon
modes inside complex plasmonic nanostructures. Its ability to unravel the physical origin of
a spectral feature of a plasmonic nanoparticle is demonstrated with a single gold nanotriangle
and a bow–tie gold nanoantenna. The first three lowest order multipole moments of the charge
distribution are then computed.

2. Calculation of the charge distribution inside plasmonic nanoparticles: theory and nu-
merical procedure

Majority of the numerical investigations of the optical response of metallic nanostructures is
limited to the computation of the far–field properties (scattering, absorption and extinction
cross-sections) or near–field intensity distribution. However, to support the continuous improve-
ment of fabrication methods and experimental measurements, a deeper understanding of the
physics of plasmonic structures also requires the direct visualization of the charge distribution
induced inside single or interacting metal nanoparticles. To deal with this problem, we have de-
veloped the electrodynamical theory of the field–susceptibilities [20] in order to gain access to
the spatial repartition of the charges inside the metal. In this framework, we solve the Maxwell
equations by writing the inhomogeneous wave equation:

∆E(r,ω0)+k2E(r,ω0) =−4π[k2
0 +

1
ε(r,ω0)

∇∇] ·P(r,ω0) , (1)

where the vector P(r,ω0) represents the electric polarization induced inside the materials, k0 =
ω0/c, and k =

√
εenvk0. The field–susceptibility theory allows the general solution of Helmholtz

equation (1) to be found:

E(r,ω0) = E0(r,ω0)+
∫

V
S0(r,r′,ω0) ·P(r′,ω0)dr′ , (2)

where the electric field E0(r,ω0) verifies the homogeneous Helmholtz equation (in the absence
of any nanostructure) and S0(r,r′,ω0) is the field–susceptibility tensor associated with the envi-
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ronment. In the framework of the linear response theory, the relationship between local electric
field and polarization inside the plasmonic nanostructure is given by:

P(r′,ω0) = χ(r′,ω0) ·E(r′,ω0) (3)

Assuming a local response of the material, the susceptibility χ(r′,ω0) can be written:

χ(r,ω0) =
εm(r,ω0)− εenv

4π
. (4)

After substitution of equation (3) into relation (2), the Lippmann–Schwinger equation can be
solved by meshing the investigated metallic nanostructure in a lattice of a total of N points
located at positions ri. This procedure generates a system of 3N linear equations that can be
self–consistently resolved by numerical inversion yielding the electric field E(ri,ω0) at each
lattice location. In general, at this point, different observables are computed, specific either to
the far–field optical response of the nanostructure (extinction or absorption cross–section ...)
or to its near–field counterpart (near–field maps, near–field spectra at specific locations, ...).
For instance, the extinction cross-sections computed in this paper are deduced from the self-
consistent electric field at every point of the nanostructure according to [21]:

Cext =
4πk
| E0 |2

N

∑
i=1

Im{E∗0(ri,ω0).P(ri,ω0)} . (5)

In the following, we go beyond these well–known calculations and show that an extension of
this numerical scheme provides direct access to the 3D charge distribution inside the nanopar-
ticle. To achieve this objective, the polarization at every lattice point ri inside the plasmonic
structure is deduced from the electric field E(ri,ω0) by applying equation (3). The volume
charge density is then deduced from the polarization vector from the divergence relation:

ρ(r,ω0) =−∇ ·P(r,ω0) . (6)

In order to describe the charge qV inside a volume V delimited by the closed surface S, we
apply Ostrogradsky theorem:

qV (r,ω0) =
∫

V
ρ(r,ω0)dr =−

∫

V
∇ ·P(r,ω0)dr (7)

= −
∮

S
P(r,ω0) ·ndr ,

where n is a unit vector normal to S. Choosing for V a sphere of radius a passing through the
closest neighbour points located on the discretization lattice, the charge density at location ri is
simply given by:

ρ(ri,ω0) =−∇ ·P(ri,ω0) =
3

Na2

N

∑
j=1

P(ri,ω0) · (r j− ri) (8)

where N is the number of closest neighbours.
The latter equation allows direct calculation of the volume charge density at any point of

a nanostructure from the polarization. A more limited application of our method could also
directly yield the surface charge density. Here, it is important to notice that both volume charge
density and surface charge density have the same physical origin. Indeed, at the boundary of a
nanostructure, the presence of an abrupt interface will yield a discontinuity in dielectric constant
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and polarization density. Due to this jump in polarization density, the charges on the boundary
sheet of the structure will not be compensated giving large volume charge density in the surface
region. Thus, the volume charge density ρ when represented as a function of the distance to
the surface is an impulse function having very large values in the vicinity of a surface. From
this one-dimensional singularity, the surface charge density representing the total amount of
charge q per unit area can be defined. However, this mathematical abstraction should not lead
to confusion : the surface charge density does not account for an additional contribution. It is not
different in essence and shares the same physical origin as its volumic counterpart. In a recent
paper, the resolution of Maxwell’s equations in the case of arbitrarily shaped dielectrics by
means of surface integral equations has been demonstrated [19]. This method involves the use
of auxiliary boundary charges and currents determined by applying the appropriate boundary
conditions for media separated by abrupt interfaces but, as stated by the authors, these surface
charges and currents do not generally represent real interface charges. On the contrary, as will be
shown in the following, our method provides direct access to the real volume charge density that
is the total amount of charge per unit volume inside an arbitrarily shaped metallic nanostructure.

3. Charge distribution inside plasmonic nanoparticles: examples

3.1. Dipolar and quadrupolar surface plasmon resonances of a gold nanoprism

In the following, we apply this scheme to the identification of the multipolar modes excited
by an external monochromatic plane wave light field inside a single gold nanoprism (cf. per-
spective view of figure (1a)). The values of the dielectric constant for gold have been taken
from Johnson et al[22]. Figure (1b) begins with the typical extinction spectrum corresponding
to a gold nanotriangle placed in water surroundings (ε = 1.77) and deposited on a planar silica
surface (ε = 2.25). The nanoparticle has been discretized in volume with 10829 cells ordered
on a hexagonal close–packed lattice. The incident electric field is polarized along a side of the
prism. This spectrum displays two optical resonances located at the wavelengths 840 nm and
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Fig. 1. (Color online) a) Perspective view of the system. The particle is a 15 nm thick
gold nanoprism the section of which is an equilateral triangle of side 110 nm. b) Far–field
extinction spectrum computed when the system is illuminated in normal incidence.

600 nm, respectively. Although less pronounced, the peak located around 600 nm is clearly
visible. Similar spectra have already been obtained experimentally. For instance, absorption
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spectroscopy experiments have evidenced two distinct plasmon resonances in colloidal silver
nanotriangles [23, 24] and optical spectroscopy on lithographically fabricated gold nanoparti-
cles [25] or colloidal gold nanoprisms [26] shows up such signatures. In a first step, we try to

λ=600 nm λ=840 nm

E E

0.14

3.26 102

0.42

a) b)

50 nm 50 nm

Fig. 2. (Color online) Normalized near-field optical intensity maps computed in a plane 15
nm above the nanoprism (same size as figure (1)).

get more insight in the origin of these spectral singularities by computing the near–field inten-
sity maps that correspond to these wavelengths when the system is illuminated by an incident
monochromatic field parallel to one side of the triangle.

To achieve this step, we first calculate the electric field at a location R outside the nanostruc-
ture from the self–consistent field inside the metallic particles E(ri,ω0) calculated previously
and the field propagator of the bare sample S0(R,ri,ω0) [20].

E(R,ω0) = E0(R,ω0)+
N

∑
i=1

S0(R,ri,ω0) ·χ(ri,ω0) ·E(ri,ω0) (9)

The normalized optical near–field intensity in the vicinity of the nanostructure can then be
written:

I(R) = |E(R,ω)|2/|Eo(R,ω)|2 . (10)

Figure (2), that presents such calculations, demonstrates that important informations concerning
the light confinement morphology can be extracted from the near–field intensity maps as
demonstrated for instance by near-field microscopy [27]. However, it does not lead to a di-
rect visualization of the polarization charges distribution inside the particles and only gives an
indirect hint of the multipolar origin of the peaks.

As demonstrated in figure (3), the 3D mapping of the charge density, both in surface or inside
the metal, allows the multipoles at work in the excited particle to be clearly identified. For the
two resonances identified in the extinction spectrum, we notice that each resonance is associated
with a different charge distribution. This distribution oscillates over time, and, consequently, the
sign of the accumulated charges is changing every half–period. For example the map (a) in fig-
ure (3), computed for λ = 840 nm, displays a bipolar charge exchange along the nanoprism
side thereby revealing a pure dipolar plasmon mode. Similarly, with four symmetrical positive
and negative charge accumulations located at two corners and the two adjacent sides, the to-
pography of the map (b) in figure (3) can unambiguously be assigned to a quadrupolar plasmon
mode. Throughout the visible range, this plasmonic structure undergoes two distinct plasmonic
resonances, one purely dipolar (at 840nm) and the other one involving a combination of dipolar
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Fig. 3. (Media 1)(Color online) (Film online) Three dimensional representation of the in-
duced charge density expressed in fC/nm3 inside the nanoprism depicted in figure (1). The
incident laser power density is 105 W/cm2. Red and blue colors are respectively associated
with positive and negative charge accumulations: (a) Map of the surface charge computed
for the largest peak wavelength λ = 840 nm; (b) Map of the surface charge computed for
the second peak wavelength λ = 600 nm; (c) A cross-section of the volume charge density
performed when cutting the nanoprism along the white line of (b).

and quadrupolar components (at 600nm). In general, a purely quadrupolar mode cannot be ex-
cited from the far-field, it has indeed to be hybridized with a dipolar moment to be excited. Note
that such an hybridization is allowed only if the structure does not display a 2–fold symmetry
as respect to the incident polarization, like in this triangle. Finally, let us note that the near–field
amplitude observed in figure (2) is directly related to the charge amount accumulated along the
sides and the corners of the particle.

3.2. Charge distribution induced inside a bow-tie gold nanoantenna

Nano–antennas represent another pertinent example of interesting nanostructures. We applied
our method to investigate the charge distribution inside a gold specimen composed of two equi-
lateral triangles (size 100x100x20 nm) deposited on a glass substrate (ε = 2.25) in air separated
by a 10 nm gap. First, the extinction cross–section has been calculated (figure (4a)). An optical
resonance is clearly visible at 700 nm. As in the case of a single nanoprism, we have first calcu-
lated the normalized optical near–field intensity above the object at this particular wavelength.
The well–known enhancement of the electric field and spatial confinement of the electromag-
netic energy in the tip region are clear on figure (4b) but the information related to the nature
of the excited mode is not apparent. We have then computed the volume charge density in the
metallic nanostructure at two different wavelengths for an incident electric field polarized along
the interparticle axis. The figure (4c), computed at the main plasmon resonance λd = 700 nm
(see extinction spectra (4a)), reveals the intense dipolar nature of the bow–tie optical response.
As demonstrated by the second charge map of figure (4d), beyond this wavelength λd = 700 nm,
the bow–tie continues to oscillate as a dipolar mode, but with a smoother charge accumulation
on the facing tips. In this second case (for λ = 760 nm), where the spectrum displays a small
shoulder, the dipolar charge distribution inside each nanoprism is very similar to the one that
would be obtained in individual prisms excited at their main dipolar resonance with the same
illumination configuration. Actually, this second calculation confirms that the small spectral
features present in the main resonance band are not due to high order multipolar excitations as
expected when working with energy lower than the dipolar mode.
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Fig. 4. (Media 2)(Color online) (Film online) a) Extinction cross-section of a gold nano–
antenna composed of two equilateral triangles (100x100x20 nm) in air, deposited on a glass
substrate (ε = 2.25). b) Normalized near–field intensity map computed in a plane 15 nm
above the bow–tie gold nano–antenna. c) and d) Three dimensional representations of the
induced charge density expressed in fC/nm3 inside a bow–tie gold nano-antenna for an
incident laser power density of 105 W/cm2.

4. Multipolar expansion

In molecular physics the interactions are usually expressed in terms of coupled multipolar
moments[28]. In a same manner, the electronic response of plasmonic nanoparticles can be
expanded as a series of electric multipoles. In plasmonics, these additional informations can be
used to design structures with optimized radiative losses, for example by controlling the mag-
nitude of the induced dipole moment. This expansion can be derived from the induced charge
distribution ρ(r,ω0) applied around an arbitrary point r0 located inside the volume occupied
by the metal particle[28, 29]:

ρ(r,ω0) = ∑
n

(−1)n

(2n−1)!!
M(n)(ω0)[n]∇(n)δ (r− r0), (11)

where, as defined in standard textbook [28, 29], M(n)(ω0) denotes a multipolar moment of nth
order. The zero order term of the expansion defines the net induced charge. According to the
electric neutrality of the metal, this quantity vanishes for any incident wavelength. The two next
contributions, namely the dipolar and quadrupolar moments, can be obtained after integration
of ρ(r,ω0) over the particle volume v:

M(1)(ω0) =
∫

v
ρ(r,ω0)(r− r0)dr (12)
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and
M(2)(ω0) =

1
2

∫

v
ρ(r,ω0)[3(r− r0)(r− r0)−|r− r0|2I]dr . (13)

From these equations we can define both time–dependent effective dipole and quadrupole mo-
ments associated with the metallic nanostructures:

M(l)(t) = M (l) cos(ω0t +Φ(l)(ω0)) , (14)

where l = 1 or 2, and the moment magnitudes are given by

M (l)(ω0) =
√

(Re[M(l)(ω0)])2 +(Im[M(l)(ω0)])2 . (15)

The phase shift between incident field and induced moment M(l)(t) reads:

Φ(l)(ω0) = Arg[M(l)(ω0)] . (16)

Although our method could provide the complete multipolar expansion associated with a given
physical system, we have restricted our analysis to the numerical study of the spectral variations
of both dipole and quadrupole moments induced by a incident plane wave in the nanoprism of
figure (1). As previously (cf. figures (2) and (3)), the incident light is polarized along a side of
the prism and the reference point r0 is located in the vicinity of the triangle side parallel to the
electric field. As shown in figure (5a), the magnitude of the effective dipole moment M (1)(ω0),
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Fig. 5. (Color online) (a) Spectral variations of dipole (red line) and quadrupole (blue line)
moments induced inside the nanoprism considered in figure (1). (b) Corresponding phase
shifts variation versus the incident wavelength.

which is independent of the reference point for a neutral structure, displays a large peak around
the 840 nm plasmon resonance identified in the extinction spectrum of figure (1). As illustrated
in Figure (5b), we notice that the induced dipole oscillates in phase with the incident field
near the resonance peak. This behavior is consistent with the theory of harmonic oscillators.
Its magnitude provides a direct estimation of the coupling of the electron oscillation inside the
nanostructure to the far–field incident electromagnetic wave.

The blue curves of figure (5) represent the induced quadrupole features (magnitude and
phase). Formally, the induced quadrupole is a symmetric dyadic tensor defined with nine com-
ponents and a zero trace. Due to the particular symmetry of the system, namely a triangle
excited by a vector field (see inset figure (5a), only both (XY) and (YX) components of the
quadrupole survive. The magnitude of the component M

(2)
xy (ω0) is represented in figure (5a)

where it displays the 600 nm plasmon resonance identified in the extinction spectrum of figure
(1).
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5. Conclusion

In summary, we have developed a theoretical scheme allowing three–dimensional computation
of the charge density inside arbitrarily complex plasmonic nanoparticles. The ability of the
method to bring important information has been demonstrated in the case of a gold nanoprism
where both dipolar and quadrupolar volume charge distributions have been evidenced. In the
case of a bow–tie gold nanoantenna, intense and opposite charge distributions accumulate at
the facing tips when the field is polarized along the main axis. Finally, we demonstrate that the
evaluation of the multipole moment magnitudes corresponding to a given charge distribution
can be achieved with our real space approach.
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